
Binary Lifting



The Idea



The Idea
If we have a precomputed array which stores info about all ranges with length 
2^j from each starting index i:



How to Compute arr[i][j]?

Suppose we have already computed arr[x][j-1] for all starting indices x, computing 
arr[i][j] is trivial:



Code (Precompute)



Code (Range Query)



Special Case: Max/Min Query

You can do it in O(1)!

Trick: take the largest range from the beginning and largest range from the end

You can do this since taking max/min over duplicate entries doesn’t affect answer

But you can’t do this when the problem ask you to calculate the sum!



Binary Lifting on Trees

Each path from a leaf to the root is an array, where leaf is at index 1 and root is at 
index n.

But how do we know the index of i+2^j? We only know the next index (i.e. father of 
current node).

Similar idea to how we computed arr[i][j]!



Computing i+2^j

Interpretation: jump 2^(j-1) indices from i first, and then jump another 2^(j-1) 
indices



Code (Precompute)



Finding LCA

Given two nodes u and v, how to find their lowest common ancestor if we have 
computed next[i][j] and arr[i][j] on tree?

First, we need to make sure u and v are on the same level

If we know the depth of u and v and computed next[i][j], this would be fairly easy

Exact the same as what we have done in previous slides!



Code (Step 1)



Finding LCA (cont’d)

Now, we know that u and v are on the same level in tree. We know that a node x is 
an ancestor of LCA if x=next[u][k]=next[v][k] for same integer k

We find the largest value of k such that next[u][k] ≠ next[k] and jump u and v by 
2^k

Repeat this process until u=v



Code (Step 2)



Comparison between RMQ Data Structures on Array
Operations Data Structure(s) Time Complexity

Point update
Point query

Array
Vector

No preprocessing
O(1) update
O(1) query

No update
Range query

Binary lifting O(nlogn) preprocess
O(nlogn) update
O(1)/O(nlogn) query

Point update
Range query

Fenwick tree
Segment tree

O(nlogn) preprocess
O(logn) update
O(logn) query

Range query
Range update

Lazy segment tree O(nlogn) preprocess
O(logn) update
O(logn) query



Comparison between RMQ Data Structures on Tree
Operations Data Structure(s) Time Complexity

Point update
Point query

Tree No preprocessing
O(1) update
O(1) query

No update
Range query

Binary lifting on tree O(nlogn) preprocess
O(nlogn) update
O(nlogn) query

Range query
Range update

Heavy-light decomposition
Splay tree
Link-cut tree

O(nlogn) preprocess
O(logn) update
O(logn) query


