Introduction Longest Common Subsequence Longest Increasing Subsequence
o] 0000 00000

DP 2: Longest Common Subsequence and Longest
Increasing Subsequence

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Fall, 2022

Introduction Longest Common Subsequence Longest Increasing Subsequence
[0000 00000

Introduction and Objectives

Two common DP patterns involve picking subsequences from an array
that maximize a property. Today we will discuss Longest Common
Subsequence and Longest Increasing Subsequence.

Objectives

» Solve LIS using recursion.

» Solve LIS using DP fechniques.
» Solve LCS using DP fechniques.
» Solve LIS by converting to LCS.

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] @000 00000

LCS

The Problem

» Given two sequences, determine the length of the longest common
subsequence.

» Eg.a,c,e,h,kandb,c,d,e,k,mhave longest common
subsequence c, e, k.

» Note that the sequences do not need to be sorted!

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] [o] le]e} 00000

Representation

» If we have two sequences A and B, we can use a 2-D DP array of
|A] + 1 columns and |B| + 1 rows.

» Let A and B be 1 index.

» The DP array position i, will give the length of the longest common
subsequence ending at A[i] and BJj].

Matrix
0 a c e h k Formula
2 00000 e 0, = dpli 0] = 0
clo > dpfi,j] = dpli —1,j — 1] +1if
d|o Ali] = B[]
e |0 > dpli,j] = max(dp[i—1,j],dpli,j—1])
k|0 otherwise
m|0

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] [o] le]e} 00000

Representation

» If we have two sequences A and B, we can use a 2-D DP array of
|A] + 1 columns and |B| + 1 rows.

» Let A and B be 1 index.

» The DP array position i, will give the length of the longest common
subsequence ending at A[i] and BJj].

Matrix

i g ?) 8 (e) g I(<) Formula

blo0oooo > dlo=dli0]=0

clo > dpli,j] =dpli—1,j — 1] + 1if
d|o Ali] = BJj]

e |0 > dp[’?l] :max(dp[l—l,/],dp[l,/—l])
k10 otherwise

m|0

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] [o] le]e} 00000

Representation

» If we have two sequences A and B, we can use a 2-D DP array of
|A] + 1 columns and |B| + 1 rows.

» Let A and B be 1 index.

» The DP array position i, will give the length of the longest common
subsequence ending at A[i] and BJj].

Matrix

@gggggg Formula

100000y > d0a=dio=0

cloo 1111 > dpli,j] =dpli —1,j — 1] + 1if
d|o Ali] = B[]

e |0 > dp[’?l] :max(dp[l—l,/],dp[l,/—l])
k10 otherwise

m|0

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] [o] le]e} 00000

Representation

» If we have two sequences A and B, we can use a 2-D DP array of
|A] + 1 columns and |B| + 1 rows.

» Let A and B be 1 index.

» The DP array position i, will give the length of the longest common
subsequence ending at A[i] and BJj].

Matrix

@gggggg Formula

ey a0 = abli0) =0

cloo 1111 > dpli,j] =dpli —1,j — 1] + 1if
dlo o111 1 Ali] = BJj]

e |0 > dp[’?l] :max(dp[l—l,/],dp[l,/—l])
k10 otherwise

m|0

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] [o] le]e} 00000

Representation

» If we have two sequences A and B, we can use a 2-D DP array of
|A] + 1 columns and |B| + 1 rows.

» Let A and B be 1 index.

» The DP array position i, will give the length of the longest common
subsequence ending at A[i] and BJj].

Matrix

@gg;ggg Formula

ey a0 = abli0) =0

cloo 1111 > dpli,j] =dpli —1,j — 1] + 1if
dlo o111 1 Ali] = BJj]

el/0 01 2 2 2 » dpli,j] = max(dp[i—1,j],dpli,j—1])
k10 otherwise

m|0

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] [o] le]e} 00000

Representation

» If we have two sequences A and B, we can use a 2-D DP array of
|A] + 1 columns and |B| + 1 rows.

» Let A and B be 1 index.

» The DP array position i, will give the length of the longest common
subsequence ending at A[i] and BJj].

Matrix

. g ?) 8 (e) g I(<) Formula

blo OO OO0 O > dp[oaj]:dp[i70]:0

cloo 1111 > dpli,j] =dpli —1,j— 1] + 1if
dloo 1111 Ali] = B[j]

e|0 01 2 2 2 » dpli,j] = max(dp[i—1,j],dpli,j—1])
ki0O 01 2 2 3 otherwise

m|0

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] [o] le]e} 00000

Representation

» If we have two sequences A and B, we can use a 2-D DP array of
|A] + 1 columns and |B| + 1 rows.

» Let A and B be 1 index.

» The DP array position i, will give the length of the longest common
subsequence ending at A[i] and BJj].

Matrix

. g ?) 8 (e) g I(<) Formula

blo OO OO0 O > dp[O,j] :dp[i,O] =0

cloo 1111 > dpli,j] =dpli —1,j— 1] + 1if
dloo 1111 Ali] = B[j]

e|0 01 2 2 2 » dpli,j] = max(dp[i—1,j],dpli,j—1])
ki0O 01 2 2 3 otherwise

m|{0 0 1 2 2 3

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] [e]e] Te} 00000

Code

1 int LCSLength(vi a, vi b) {
2 int i,j;
3 vvi dp = vvi(a.lengthO+1,vi(b.length()+1));

5 for(i=0; i<=a.length(); ++i)

6 dpl[i,0] = 0;

7 for(j=0; j<=b.length(); ++j)

8 dpl0,j] = 0;

9 for(i=1; i<=a.length(); ++i)

10 for(j=1; j<=b.length(); ++j)

n if (alil == b[jD)

12 dpli,j]l = dpli-1,j-11 + 1;

13 else

1 dpli,j] = max(dpli-1,j], dpli,j-11);

16 return dpla.length(),b.length()];

Introduction Longest Common Subsequence Longest Increasing Subsequence
o] oooe 00000

Discussion
Matrix
0 a c e h k
010 0 0 0o o Discussion
b0 0O 0 0 0 O > How can we “read out” the actual
cl0 0 1 1 11 subsequence?
dio o1 111 > How can we save memory if the two
e|0 0 1 2 2 2 subsequences are very large?
kijo 01 2 2 3
m|{0 0 1 2 2 3

Introduction Longest Common Subsequence Longest Increasing Subsequence
o) 0000 ©0000

LIS

The Problem
» Given a sequences, determine the length of the longest increasing
subsequence.

» Eg:2,1,5,8,3,5,10has LISof 2,5,8,10.

» There can be more than one LIS!

Introduction Longest Common Subsequence Longest Increasing Subsequence
o) 0000 0®000

Recursive Solution

» We can use the recursive solution as a start for the DP version.
» Let lis(i) be the length of the longest increasing subsequence ending
ati.
» Then/(0) = 1.
> lis(i) =1+ max;;(l)lis(j) when afj] < ali]
> lis(i) = 1 ~ otherwise.

P This is exponential time.

Introduction Longest Common Subsequence Longest Increasing Subsequence
o) 0000 0000

Memoizing Version

If we simply memoize lis we get O(n?) time
1 int lis(a) {

2 int i,j,m;

3 vi lis(a.length(),1);

4 for(i=1; i<a.length(); ++i)

5 for(j=0; j<i; ++j)

6 if (ali] > alj] && 1lis[i] <= 1lis[j])
7 lis[i] = 1lis[j] + 1;

8 for(i=0, m=1; i<a.length(); ++i)

9 m = max(m,lis[i]);

10 return m;

Introduction Longest Common Subsequence Longest Increasing Subsequence
o) 0000 00000

Return the elemenents

> We can keep track of the “previous” elements to return the actual

sequence.
1 vi lis(a) {
2 int i,j,m;
3 vi lis(a.length(),1);
4 vi prev(a.length(),-1);
5 for(i=1; i<a.length(); ++i)
6 for(j=0; j<i; ++j)
7 if (ali] > alj] && 1is[i] <= 1is[j]) {
8 1is[j] = lis[i] + 1;
9 prev[i] = j;
10 }
n for(i=0, m=1; i<a.length(); ++i)
12 m = max(m,lis[i]);
13 return prev;

Introduction Longest Common Subsequence Longest Increasing Subsequence
o) 0000 0000

LIS is like LCS!

> We can use LCS code to solve this
» Creatfe a copy of A into B, sorting B.

» Remove duplicates if you want a strictly increasing sequence.
» Use sets

1 vi distictCopy(vi a) {

2 vi new; set<int> seen;

3

4 for(auto it=a.begin(); it != a.end(); ++it)
5 if (seen.find(*it) == seen.end()) {

6 seen.insert (*it);

7 new.push_back(*it);

8 }

9

10 sort(new.begin(), new.end());

1 return new;

12 F

	Introduction
	Longest Common Subsequence
	Longest Increasing Subsequence

