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Introduction and Objectives

Two common DP patterns involve picking subsequences from an array

that maximize a property. Today we will discuss Longest Common

Subsequence and Longest Increasing Subsequence.

Objectives

I Solve LIS using recursion.

I Solve LIS using DP techniques.

I Solve LCS using DP techniques.

I Solve LIS by converting to LCS.
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LCS

The Problem

I Given two sequences, determine the length of the longest common

subsequence.

I E.g.: a,c,e,h,k and b,c,d,e,k,m have longest common

subsequence c,e,k.
I Note that the sequences do not need to be sorted!
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Representation

I If we have two sequences A and B, we can use a 2-D DP array of

|A|+ 1 columns and |B|+ 1 rows.

I Let A and B be 1 index.

I The DP array position i, j will give the length of the longest common

subsequence ending at A[i] and B[j].

Matrix
∅ a c e h k

∅ 0 0 0 0 0 0
b 0
c 0
d 0
e 0
k 0
m 0

Formula

I dp[0, j] = dp[i, 0] = 0

I dp[i, j] = dp[i− 1, j− 1] + 1 if
A[i] = B[j]

I dp[i, j] = max(dp[i−1, j], dp[i, j−1])
otherwise
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Code
1 int LCSLength(vi a, vi b) {
2 int i,j;
3 vvi dp = vvi(a.length()+1,vi(b.length()+1));
4

5 for(i=0; i<=a.length(); ++i)
6 dp[i,0] = 0;
7 for(j=0; j<=b.length(); ++j)
8 dp[0,j] = 0;
9 for(i=1; i<=a.length(); ++i)

10 for(j=1; j<=b.length(); ++j)
11 if (a[i] == b[j])
12 dp[i,j] = dp[i-1,j-1] + 1;
13 else
14 dp[i,j] = max(dp[i-1,j], dp[i,j-1]);
15

16 return dp[a.length(),b.length()];
17 }
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Discussion

Matrix
∅ a c e h k

∅ 0 0 0 0 0 0
b 0 0 0 0 0 0
c 0 0 1 1 1 1
d 0 0 1 1 1 1
e 0 0 1 2 2 2
k 0 0 1 2 2 3
m 0 0 1 2 2 3

Discussion

I How can we “read out” the actual

subsequence?

I How can we save memory if the two

subsequences are very large?
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LIS

The Problem

I Given a sequences, determine the length of the longest increasing

subsequence.

I E.g.: 2,1,5,8,3,5,10 has LIS of 2,5,8,10.
I There can be more than one LIS!
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Recursive Solution

I We can use the recursive solution as a start for the DP version.

I Let lis(i) be the length of the longest increasing subsequence ending
at i.

I Then l(0) = 1.
I lis(i) = 1 +maxi−1

j=0lis(j) when a[j] < a[i]
I lis(i) = 1 ~ otherwise.

I This is exponential time.
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Memoizing Version

If we simply memoize lis we getO(n2) time

1 int lis(a) {
2 int i,j,m;
3 vi lis(a.length(),1);
4 for(i=1; i<a.length(); ++i)
5 for(j=0; j<i; ++j)
6 if (a[i] > a[j] && lis[i] <= lis[j])
7 lis[i] = lis[j] + 1;
8 for(i=0, m=1; i<a.length(); ++i)
9 m = max(m,lis[i]);

10 return m;
11 }
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Return the elemenents

I We can keep track of the “previous” elements to return the actual

sequence.

1 vi lis(a) {
2 int i,j,m;
3 vi lis(a.length(),1);
4 vi prev(a.length(),-1);
5 for(i=1; i<a.length(); ++i)
6 for(j=0; j<i; ++j)
7 if (a[i] > a[j] && lis[i] <= lis[j]) {
8 lis[j] = lis[i] + 1;
9 prev[i] = j;

10 }
11 for(i=0, m=1; i<a.length(); ++i)
12 m = max(m,lis[i]);
13 return prev;
14 }
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LIS is like LCS!

I We can use LCS code to solve this.

I Create a copy of A into B, sorting B.

I Remove duplicates if you want a strictly increasing sequence.
I Use sets

1 vi distictCopy(vi a) {
2 vi new; set<int> seen;
3

4 for(auto it=a.begin(); it != a.end(); ++it)
5 if (seen.find(*it) == seen.end()) {
6 seen.insert(*it);
7 new.push_back(*it);
8 }
9

10 sort(new.begin(), new.end());
11 return new;
12 }


	Introduction
	Longest Common Subsequence
	Longest Increasing Subsequence

