
Objectives Edit Distance

Edit Distance

CS 491 CAP

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Fall 2024



Objectives Edit Distance

Objectives

I Use DP to determine the edit distance between two strings.



Objectives Edit Distance

The Problem

I Given two strings s and t, how many “edits” does it take to tranform
one to another?

I Edit = insert, delete, or change.
I Usually each of these “costs” one unit.

I Usually called the Levinstein Distance

I Examples:

I changing DATA to BETA needs 2 steps.
I changing ETA to BETA needs 1 step.
I changing GRETA to BETA needs 2 steps.

Algorithm Outline

I Suppose you have strings quiet and quaint.
I Suppose You are comparing i in quiet to a in quaint.

I We are assuming the beginnings have been edited.
I What operations chould you do here?



Objectives Edit Distance

The Näive Algorithm

Base Cases

1 // Thanks, Wikipedia!
2 int LD(string s, int len_s, string t, int len_t) {
3 int cost;
4

5 /* base case: empty strings */
6 if (len_s == 0) return len_t;
7 if (len_t == 0) return len_s;
8

9 /* test if last characters of the strings match */
10 if (s[len_s-1] == t[len_t-1])
11 cost = 0;
12 else
13 cost = 1;



Objectives Edit Distance

The Näive Algorithm, ctd

Recursive Case

15 /* return minimum of delete char from s,
16 delete char from t,
17 and delete char from both */
18 return minimum(LD(s, len_s - 1, t, len_t ) + 1,
19 LD(s, len_s , t, len_t - 1) + 1,
20 LD(s, len_s - 1, t, len_t - 1) + cost);
21 }

How can you convert this to DP?

You have to decide what is the state being remembered….



Objectives Edit Distance

Dynamic Programming using Memoization

Base Cases

1 int LD(const char *s, int len_s, const char *t, int len_t)
2 {
3 vvi dp = vvi(len_s + 1, vi(len_t +1));
4 int cost;
5

6 for(int i=0; i<=len_s; ++i)
7 dp[i][0] = i;
8

9 for(int i=0; i<=len_t; ++i)
10 dp[0][i] = i;



Objectives Edit Distance

Dynamic Programming using Memoization, ctd

Memoized Part

11 for(int i=1; i<=len_s; ++i)
12 for(j=1; j<=len_t; ++j) {
13 cost = s[i] == t[j] ? 0 : 1;
14

15 dp[i][j] = minimum(dp[i-1][j] + 1,
16 dp[i][j-1] + 1,
17 dp[i-1][j-1] + cost);
18 }
19 return dp[len_s][len_t];
20 }


	Objectives
	Edit Distance

