Introduction
000000
:

More Tricks with DFS

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE



Introduction
©00000
:

Objectives

Your Objectives: Use DFS to
» check if a graph is bipartite
» find articulation points
» find bridges (cut edges)
P see if a graph has cycles
>

find strongly connected components



Introduction
0@0000
:

Check if a graph is bipartite

Also called 2-coloring
Use either BFS or DFS

Start root with color O

vVvyyvyy

Color each direct neighbor color 1
For vertexuuse 1 - color [u] for neighbors.

v

Recurse / Enqueue

v

If you find an already visited neighbor with the same color as
the parent, the graph is not bipartite.




Introduction
0@0000
:

Check if a graph is bipartite

Also called 2-coloring
Use either BFS or DFS

Start root with color O

vVvyyvyy

Color each direct neighbor color 1
For vertexuuse 1 - color [u] for neighbors.

v

Recurse / Enqueue

v

If you find an already visited neighbor with the same color as
the parent, the graph is not bipartite.




Introduction
0@0000

Check if a graph is bipartite

Also called 2-coloring
Use either BFS or DFS

Start root with color O

vVvyyvyy

Color each direct neighbor color 1
For vertexuuse 1 - color[u] for neighbors.

v

Recurse / Enqueue

v

If you find an already visited neighbor with the same color as
the parent, the graph is not bipartite.



Introduction
0@0000

Check if a graph is bipartite

Also called 2-coloring
Use either BFS or DFS

Start root with color O

vVvyyvyy

Color each direct neighbor color 1
For vertexuuse 1 - color[u] for neighbors.

v

Recurse / Enqueue

v

If you find an already visited neighbor with the same color as
the parent, the graph is not bipartite.



Introduction
0@0000

Check if a graph is bipartite

Also called 2-coloring
Use either BFS or DFS

Start root with color O

vVvyyvyy

Color each direct neighbor color 1
For vertexuuse 1 - color[u] for neighbors.

v

Recurse / Enqueue

v

If you find an already visited neighbor with the same color as
the parent, the graph is not bipartite.



Introduction
0@0000

Check if a graph is bipartite

Also called 2-coloring
Use either BFS or DFS

Start root with color O

vVvyyvyy

Color each direct neighbor color 1
For vertexuuse 1 - color [u] for neighbors.

v

Recurse / Enqueue

v

If you find an already visited neighbor with the same color as
the parent, the graph is not bipartite.



Introduction
0@0000

Check if a graph is bipartite

Also called 2-coloring
Use either BFS or DFS

Start root with color O

vVvyyvyy

Color each direct neighbor color 1
For vertexuuse 1 - color [u] for neighbors.

v

Recurse / Enqueue

v

If you find an already visited neighbor with the same color as
the parent, the graph is not bipartite.



Introduction
00®000
:

Detecting Cycles

» Use 3 states:

» Unvisited

» Explored — we entered the node but haven't

finished it yet

» Visited — mark when we are done with the node.
» Edge types:

» Explored — Unvisited : Parent discovers new child

» Explored — Visited: A forward or cross edge

» Explored — Explored: A back edge / cycle




Introduction
00®000
:

Detecting Cycles

» Use 3 states:

» Unvisited

» Explored — we entered the node but haven't

finished it yet

» Visited — mark when we are done with the node.
» Edge types:

» Explored — Unvisited : Parent discovers new child

» Explored — Visited: A forward or cross edge

» Explored — Explored: A back edge / cycle




Introduction
00®000
:

Detecting Cycles

» Use 3 states:

» Unvisited

» Explored — we entered the node but haven't
finished it yet

» Visited — mark when we are done with the node.

» Edge types:
» Explored — Unvisited : Parent discovers new child
» Explored — Visited: A forward or cross edge
» Explored — Explored: A back edge / cycle




Introduction
00®000

Detecting Cycles

» Use 3 states:

» Unvisited

» Explored — we entered the node but haven't

finished it yet

» Visited — mark when we are done with the node.
» Edge types:

» Explored — Unvisited : Parent discovers new child

» Explored — Visited: A forward or cross edge

» Explored — Explored: A back edge / cycle




Introduction
00®000

Detecting Cycles

» Use 3 states:

» Unvisited

» Explored — we entered the node but haven't

finished it yet

» Visited — mark when we are done with the node.
» Edge types:

» Explored — Unvisited : Parent discovers new child

» Explored — Visited: A forward or cross edge

» Explored — Explored: A back edge / cycle




Introduction
00®000
:

Detecting Cycles

(@)
» Use 3 stafes:

» Unvisited

» Explored — we entered the node but haven't
finished it yet

» Visited — mark when we are done with the node.

» Edge types:
» Explored — Unvisited : Parent discovers new child
» Explored — Visited: A forward or cross edge
» Explored — Explored: A back edge / cycle




Introduction
00000

Finding Cut Nodes and Edges

» Perform a DFS on this graph

» Put a superscript on a node for
the DFS Num.

» Put a subscript for the DFS Min.

» Where are the cut edges, cut
nodes, SCCs, and cycles?



Introduction
000000

Finding Cut Nodes and Edges

v

dfs_min[u] < dfs_num[ul, then
u belongs to a cycle.

dfs_min[u] = dfs_num[u], then
we have the root of a SCC.
dfs_num[u] <= dfs_min[v],
then u is a cut node.

dfs_num[u] < dfs_min[v], then
u-v is a cut edge.



Introduction
00000@

Finding Cut Nodes and Edges

If dfs_min[u] < dfs_num[u], thenu
belongs to a cycle.

If dfs_min[u] = dfs_num([u], then
we have the root of a SCC.

If dfs_num[u] <= dfs_min[v], then
uis a cut node.

If dfs_ num[u] < dfs_min[v], then
u-v is a cut edge.



	Introduction
	Objectives


