Greedy Algorithms
00000000
:

Greedy Algorithms

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Fall 2024

Greedy Algorithms
00000000
:

Introduction and Objectives

Greedy Algorithms
00000000
:

Objectives

P Describe the characteristics of a greedy algorithm

» Show how to use a greedy algorithm to solve several classic
problems

Greedy Algorithms
©0000000
:

Properties of Greedy Algorithms

1. They have optimal substructure — subproblems have optimal
solutions that can be

combined to get the main solution.

1. They have the Greedy Property — We will never regret making a
greedy choice locally.

Greedy Algorithms
0@000000
:

Classic Example: Coin Change

» Given coins of values 25, 10, 5, 1: make 57 with as few coins as

possible.
» This version can be solved greedily!
> 57=25x2+5+1x2.

O L N O U AW N =

int numCoinTypes, amount, count, 1i;

cin >> numCoinTypes;

vi coins;

for(i=0; i<numCoinTypes; ++i) {
cin >> x; coins.push_back(x);

}

cin >> amount;

count = 0; i=0;

while (amount > 0)
if (coins[i] <= amount) {

amount -= coins[i]; ++count;

} else ++i;

Greedy Algorithms
00@00000
:

Classic Example: Coin Change

» Given coins of values 25, 10, 5, 1: make 57 with as few coins as

possible.
1 fun main() {
2 val numCoinTypes = readln().tolInt()
3 val coins : MutableList<Int> = mutableListOf ()
4 repeat (numCoinTypes) { coins.add(readln().toInt()) }
5 var amount = readln().toInt()
6 var count = 0
7 for (coin in coins) {
8 if (amount > O && coin <= amount) {
9 count += amount / coin
10 amount = amount 7% coin
1 }
12 }
13 println("Final cout is $count")

Greedy Algorithms
000®0000
:

Coin change is not always greedy

» Suppose we have coin values 25, 20, 5, 1.

Greedy Algorithms
000®0000
:

Coin change is not always greedy

» Suppose we have coin values 25, 20, 5, 1.
» What is the optimal way to make 40 cents change now?

Greedy Algorithms
000®0000
:

Coin change is not always greedy

» Suppose we have coin values 25, 20, 5, 1.
» What is the optimal way to make 40 cents change now?

» Greedily: 25+ 5+ 5 =3 coins

Greedy Algorithms
000®0000
:

Coin change is not always greedy

» Suppose we have coin values 25, 20, 5, 1.
» What is the optimal way to make 40 cents change now?

» Greedily: 25+ 5+ 5 =3 coins
» Optimal: 20 x 2

Greedy Algorithms
0000®000
:

Classic Example: Activity Selection Problem

» Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

Greedy Algorithms
0000®000
:

Classic Example: Activity Selection Problem

» Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

P Assume only one activity at a time.

Greedy Algorithms
0000®000
:

Classic Example: Activity Selection Problem

» Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

P Assume only one activity at a time.

» Sort activities by finish times

Greedy Algorithms
0000®000

Classic Example: Activity Selection Problem

» Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

P Assume only one activity at a time.
» Sort activities by finish times
» Add first activity to list

Greedy Algorithms
0000®000
:

Classic Example: Activity Selection Problem

» Given a list of activities with start and finish times, what is the
maximum number of activities someone can do?

P Assume only one activity at a time.
» Sort activities by finish times
» Add first activity to list
P Repeat: take first activity that has start time after last finish time.

Greedy Algorithms
00000800
:

Source Code

P Assume a has pairs representing the activities.
v vii a; // actvitiy pairs
2 int last;
3 cout << a[0] << endl;
4 last = a[0].second;
5 for(i=1; i<a.length; ++i)
6 if (al[i].first >= last) {
7 cout << a[i] << endl;
8 last = a[i].second;

Greedy Algorithms
00000080
:

Source Code

» Assume a has pairs representing the activities.

1 fun schedule(activities : List<Pair<Int,Int>>) {

2 val sorted = activities.sortedBy { it.second }
3 var last = -1

4 for (act in sorted) {

5 if (act.first >= last) {

6 println(act)

7 last = act.second

8 }

9 }

Greedy Algorithms
0000000@
:

In contests

» Use it if you can, but be sure. Otherwise, use Complete Search or
DP.

P |earn a few classic algorithms: coin change, load balancing, interval
covering

» Preprocessing input can help... e.g., sorfing your input first.

	Greedy Algorithms

